(a)^2+(a)^2=(4R)^2

Simple and best practice solution for (a)^2+(a)^2=(4R)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a)^2+(a)^2=(4R)^2 equation:



(a)^2+(a)^2=(4)^2
We move all terms to the left:
(a)^2+(a)^2-((4)^2)=0
determiningTheFunctionDomain a^2+a^2-4^2=0
We add all the numbers together, and all the variables
2a^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $

See similar equations:

| 4x+3.7=21 | | 9y+14=11y | | y=-2(1+1) | | n=16+1/5 | | y=-2(0+1) | | -6(2n+2)=10n+6-4n | | y=-2(-1+1) | | 3k+k=k+6 | | -5+1÷5a=4 | | 10a+2=32 | | 6=10y-4y | | 2y-8=-1/5(3-5y) | | 14x-2(x+3)+11=121 | | 3x=3x-25 | | -4=2c+-10 | | (27+x3)(-27+x3)=0 | | 125+5n=206 | | 3a=6+4a | | -50m+600=250 | | 7(-4x+9)=2x-8(4x-6) | | 30x+15=50x+10 | | x2+16x=44 | | 2x+4=5x+28 | | v/4+3=11 | | 4(x−3)+4=4x−7 | | 7-2x=-2x+11 | | 3x2-11x-4=5 | | 5(3y-1)+7=3(4y+4)+18 | | 77x-25x+3x=752 | | 12t^2-3t+3=0 | | 2x+3=34-11x | | 6y=(3) |

Equations solver categories